Package: BACprior 2.1.1

BACprior: Choice of Omega in the BAC Algorithm

The Bayesian Adjustment for Confounding (BAC) algorithm (Wang et al., 2012) can be used to estimate the causal effect of a continuous exposure on a continuous outcome. This package provides an approximate sensitivity analysis of BAC with regards to the hyperparameter omega. BACprior also provides functions to guide the user in their choice of an appropriate omega value. The method is based on Lefebvre, Atherton and Talbot (2014).

Authors:Denis Talbot, Genevieve Lefebvre, Juli Atherton

BACprior_2.1.1.tar.gz
BACprior_2.1.1.zip(r-4.5)BACprior_2.1.1.zip(r-4.4)BACprior_2.1.1.zip(r-4.3)
BACprior_2.1.1.tgz(r-4.4-any)BACprior_2.1.1.tgz(r-4.3-any)
BACprior_2.1.1.tar.gz(r-4.5-noble)BACprior_2.1.1.tar.gz(r-4.4-noble)
BACprior_2.1.1.tgz(r-4.4-emscripten)BACprior_2.1.1.tgz(r-4.3-emscripten)
BACprior.pdf |BACprior.html
BACprior/json (API)

# Install 'BACprior' in R:
install.packages('BACprior', repos = c('https://detal9.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 3 scripts 315 downloads 3 exports 3 dependencies

Last updated 1 years agofrom:baf3d561c5. Checks:OK: 5 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 09 2024
R-4.5-winNOTEOct 09 2024
R-4.5-linuxNOTEOct 09 2024
R-4.4-winOKOct 09 2024
R-4.4-macOKOct 09 2024
R-4.3-winOKOct 09 2024
R-4.3-macOKOct 09 2024

Exports:BACprior.bootBACprior.CVBACprior.lm

Dependencies:bootleapsmvtnorm